You are here: Home page > Science > Fireworks

Red and yellow aerial firework display at Seattle Seafair, 2007

Firework science

It's just as well fireworks were invented in ancient times, because such an outrageous invention surely wouldn't be allowed in our risk-averse society today. Just imagine if fireworks didn't exist and someone suddenly suggested the idea of allowing people to fire lots of explosives into the air! Fortunately, that's not the case and we can still enjoy the dazzling magic of these psychedelic aerial displays every time we feel like a joyous outdoor celebration. Fireworks teach us some interesting physics and chemistry, so let's take a closer look at what they are and how they work!

Photo: A fireworks display at Seattle Seafair. Photo by Douglas G. Morrison courtesy of US Navy and Wikimedia Commons.

Sponsored links

Contents

  1. What are fireworks?
  2. How do fireworks work?
  3. The science of fireworks
  4. Types of fireworks
  5. A brief history of fireworks
  6. Fireworks are exciting—but DANGEROUS!
  7. Find out more

What are fireworks?

A firework is essentially a missile designed to explode in a very controlled way with bangs and bursts of brightly colored light. The word "firework" comes from the Greek word pyrotechnics, which means, very appropriately, "fire art" or "fire skill"; there's certainly no shortage of art and skill in modern firework displays! [1]

How do fireworks work?

Fireworks can be quite complex and different types (rockets, Catherine wheels, and so on) work in different ways. Simply speaking, though, aerial fireworks (ones designed to fire up into the sky) have five main parts. Working up from the bottom to the top:

Simple illustration showing the five main parts of a typical firework.

  1. Stick ("tail"): The first thing you notice is a long wooden or plastic stick protruding from the bottom that ensures the firework shoots in a straight line. That's important for two reasons. First, so that fireworks go where you intend to and don't fly in a random direction, causing fires, property damage, or injuries. Second, because it helps display organizers to position firework effects with accuracy and precision. Some fireworks now have hinged plastic sticks so they can be sold in smaller and more compact boxes.
  2. Fuse: This is the part that starts the main part of the firework (the charge) burning and ignites other, smaller fuses that make the interesting, colorful parts of the firework (the effects) explode some time later. In a basic home firework, the main fuse consists of a piece of paper or fabric that you light with a match or cigarette lighter. In a complex public firework display, fuses are lit by electrical contacts known as wirebridge fuseheads. When the firework technician pushes a button, an electric current flows along a wire into the fusehead, making it burn briefly so it ignites the main fuse. Unlike manual ignition, electrical ignition can be done at a considerable distance, so it's much safer.
  3. Charge ("motor"): The charge is a relatively crude explosive designed to blast a firework up into the sky, sometimes a distance of several hundred meters (1000ft or so) at a speed of up to several hundred km/miles per hour (as fast as a jet fighter)! It's usually made up of tightly packed, coarse explosive gunpowder (also known as black powder). Traditionally, gunpowder used in fireworks was made of 75 percent potassium nitrate (also called saltpeter) mixed with 15 percent charcoal and 10 percent sulfur; modern fireworks sometimes use other mixtures (such as sulfurless powder with extra potassium nitrate) or other chemicals instead. Note that the charge simply sends the firework high into the air and clear of any spectators; it doesn't make the spectacular explosions you can actually see. [6]
  4. Effect: This is the part of the firework that makes the amazing display once the firework is safely high in the air. A single firework will have either one effect or multiple effects, packed into separate compartments, firing off in sequence, ignited by a relatively slow-burning, time-delay fuse working its way upward and ignited by the main fuse. (The firework illustrated here has three effects.) Though essentially just explosives, the effects are quite different from the main charge. Each one is made up of more loosely packed, finer explosive material often fashioned into separate "stars," which make up the small, individual, colorful explosions from a larger firework. Depending on how each effect is made and packed, it can either create a single explosion of stars very quickly or shoot off a large number of mini fireworks in different directions, causing a series of smaller explosions in a breathtaking, predetermined sequence.
  5. Head: This is the general name for the top part of the firework containing the effect or effects (collectively known as the payload—much like the load in a space rocket). Sometimes the head has a pointed "nose cone" to make the firework faster and more aerodynamic and improve the chance of it going in a straight line, though many fireworks simply have a blunt end.
Sponsored links

The science of fireworks

Science teachers love fireworks because they teach you about chemistry and physics at the same time, in a very dynamic and colorful way!

Chemistry of fireworks

An exploding firework is essentially a number of chemical reactions happening simultaneously or in rapid sequence. When you add some heat, you provide enough activation energy (the energy that kick-starts a chemical reaction) to make solid chemical compounds packed inside the firework combust (burn) with oxygen in the air and convert themselves into other chemicals, releasing smoke and exhaust gases such as carbon dioxide, carbon monoxide, and nitrogen in the process. For example, this is an example of one of the chemical reactions that might happen when the main gunpowder charge burns:

2KNO3 (potassium nitrate) + S (sulfur) + 3C (carbon in charcoal form) → K2S (potassium sulfide) + N2 (nitrogen gas) + 3CO2 (carbon dioxide)

What makes the different colors in fireworks? That's chemistry too! Fireworks get their color from metal compounds (also known as metal salts) packed inside. You probably know that if you burn metals in a hot flame (such as a Bunsen burner in a school laboratory), they glow with very intense colors— that's exactly what's happening in fireworks. Different metal compounds give different colors. Sodium compounds give yellow and orange, for example, copper and barium salts give green or blue, and calcium or strontium make red.

How different metal salts make fireworks of different colors.

Photo: Chemical reactions in the sky: different metal salts make the different colors in firework displays. Clockwise from top left: blue and green = copper or barium; red = calcium or strontium; yellow and white = sodium.

Physics of fireworks

The solid chemicals packed into the cardboard case don't simply rearrange themselves into other chemicals: some of the chemical energy locked inside them is converted into four other kinds of energy (heat, light, sound, and the kinetic energy of movement). According to a basic law of physics called the conservation of energy (one of the most important and fundamental scientific laws governing how the universe works), the total chemical energy packed into the firework before it ignites must be the same as the total remaining in it after it explodes, plus the energy released as light, heat, sound, and movement.

Physics also explains why a firework shoots into the air. The charge is little more than a missile. As it burns, the firework is powered by action-and-reaction (also known as Newton's third law of motion) in exactly the same way as a space rocket or jet engine. When the powder packed into the charge burns, it gives off hot exhaust gases that fire backward. The force of the exhaust gases firing backward is like the blast coming out from a rocket engine and creates an equal and opposite "reaction" force that sends the firework shooting forward up into the air.

A symmetrical firework explosion.

Photo: Fireworks (and explosions generally) tend to be symmetrical—an example of the law of conservation of momentum. Photo by Yasuo Osakabe courtesy of US Air Force and DVIDS.

If you look at the various firework photos on this page, you'll see another bit of interesting physics going on as well. Notice how fireworks always make symmetrical explosions? If one part of the firework goes left, another part goes to the right. You never see a firework sending all its stars to the left or a bigger series of explosions to the left than to the right: the explosion is always perfectly symmetrical. Why is that? It's because of another basic law of physics called the conservation of momentum: the momentum of a firework (the amount of "stuff moving" in each direction, if you like) must be the same before and after an explosion, so explosions to the left must be exactly balanced by explosions to the right.

Sponsored links

Types of fireworks

Examples of how fireworks can be connected to make triangular or more complex spinning wheels, caprices, and furilonas.

Artwork: In professional displays, fireworks can be fired singly, or connected to make spinning wheels of all shapes and sizes. Here are some examples from an old book, published in 1878, called the The Pyrotechnist's Treasury: A Guide to Making Fireworks and Pyrotechnics by Thomas Kentish. The individual fireworks are shown in red.

Surprise and variety are the key to any good firework display: if all the fireworks were exactly the same, people would quickly get bored. Although all fireworks essentially work the same way—combining the power of a missile with the glory of burning metallic compounds—there are lots of different types. The ones we've talked about so far are called rockets or skyrockets and produce the most spectacular displays high in the air. Catherine wheels and pinwheels work closer to the ground. They have a number of small fireworks mounted around the edge of a wooden or cardboard disk and make it spin around as they fire off. Roman candles blow out a series of small fiery explosions from a cylinder every so often. Firecrackers are fireworks designed to produce sound rather than light and they're often incorporated into the upper effects of rockets.

We think of fireworks as entertainment, but the same technology has more practical uses. Flares used by military forces and at sea work in almost exactly the same way, though instead of using metallic compounds made from elements such as sodium, they use brighter and more visible compounds based on magnesium and they're designed to burn for much longer. Even in an age of satellite navigation and radar, most ships still carry flares like these as a backup method of signaling distress.

A brief history of fireworks

Animation showing a firework display in Swanage, England.

Photo: A summer firework display in Swanage, England. A single firework can involve dozens of separate explosions.

Who invented fireworks? Here's our quick history lesson!

Fireworks are exciting—but DANGEROUS!

A large public firework display during a 4th of July celebration in 2005.

Photo: A 4th July firework celebration in San Diego. Photo by Scott Taylor courtesy of US Navy and Wikimedia Commons.

Fireworks give joy and pleasure to many millions of people every year, but they have to be treated with utmost respect because they are extremely dangerous. Consider: what you have in a firework is an explosive missile. Get too close to it and it could burn you badly, disfigure you for life, or even kill you. Every year, millions of dollars of damage is done by stray fireworks setting fire to property and there's also the distress that fireworks cause to pets to consider.

That's why the sale and use of fireworks is restricted by law in many countries. If you're having anything to do with fireworks, be sure to read and follow all the safety instructions to the letter. Better still, why not leave handling fireworks to someone else? Go to a properly organized and supervised civic display and enjoy all the fun of the fireworks with none of the danger.

Find out more about firework safety from these well-prepared official sites:

About the author

Chris Woodford is the author and editor of dozens of science and technology books for adults and children, including DK's worldwide bestselling Cool Stuff series and Atoms Under the Floorboards, which won the American Institute of Physics Science Writing award in 2016. You can hire him to write books, articles, scripts, corporate copy, and more via his website chriswoodford.com.

Sponsored links

Don't want to read our articles? Try listening instead

If you'd rather listen to our articles than read them, please subscribe to our new podcast on Apple Podcasts, Spotify, Audible, Amazon, Podchaser, or your favorite podcast app, or listen below:

Find out more

On this website

On other sites

Books

For older readers

For younger readers

Articles

References

  1.    More specifically, "pyrotechnics" comes from the Greek works "pyr" (fire) and "technē" (art). Technē can also mean making things appear, bringing them forward, and the development of knowledge. For a long discussion of the etymology, see Heidegger on Art and Art Works by J.J. Kockelmans, Springer, 1985, p.70.
  2.    The discovery of gunpowder is sometimes credited to alchemist Wei Boyang c.142 CE. See Chinese Siege Warfare: Mechanical Artillery & Siege Weapons of Antiquity, an Illustrated History by Jieming Liang, Leong Kit Meng, 2006, p.74.
  3.    Although this is often quoted as the first use of "rocket" technology, it does depend on how you define rocket. Some historians think these rockets may been little more than burning sticks. See The First Fireworks: Origins of the Rocket, Smithsonian National Air and Space Museum [undated].
  4.    See The Gunpowder Age: China, Military Innovation, and the Rise of the West in World History by Tonio Andrade, Princeton University Press, 2017, p.44.
  5.    Noted in Fireworks Pyrotechnic Arts and Sciences in European History by Simon Werrett, University of Chicago Press, 2010, p.16–17.
  6.    The classic mixture of potassium nitrate, charcoal, and sulfur is documented in many books.

Please do NOT copy our articles onto blogs and other websites

Articles from this website are registered at the US Copyright Office. Copying or otherwise using registered works without permission, removing this or other copyright notices, and/or infringing related rights could make you liable to severe civil or criminal penalties.

Text copyright © Chris Woodford 2008, 2023. All rights reserved. Full copyright notice and terms of use.

Follow us

Rate this page

Please rate or give feedback on this page and I will make a donation to WaterAid.

Tell your friends

If you've enjoyed this website, please kindly tell your friends about us on your favorite social sites.

Press CTRL + D to bookmark this page for later, or email the link to a friend.

Cite this page

Woodford, Chris. (2008/2023) Fireworks. Retrieved from https://www.explainthatstuff.com/howfireworkswork.html. [Accessed (Insert date here)]

Bibtex

@misc{woodford_fireworks, author = "Woodford, Chris", title = "Fireworks", publisher = "Explain that Stuff", year = "2008", url = "https://www.explainthatstuff.com/howfireworkswork.html", urldate = "2023-04-11" }

Can't find what you want? Search our site below

More to explore on our website...

Back to top