You are here: Home page > Science > Center of gravity

A Korean tightope walker in silhouette.

Center of gravity

What goes up must come down—that's one way of understanding gravity. We think of gravity as a force that pulls things downward (toward Earth's center), but it doesn't always work like that. Sometimes gravity can make things turn and topple over, especially if they are high up and unbalanced. Tightrope walkers understand this better than anyone. Tiptoeing over the high wire, they often teeter and wobble from side to side just to entertain us, yet they hardly ever fall off. Instinctively understanding the physics of forces helps them staying firmly on the wire. If, like them, you understand a simple concept called center of gravity, you'll find balancing is child's play!

Photo: Tightrope walkers have an instinctive understanding of how the position of their center of gravity affects their balance. Photo by Kelsey Tucker courtesy of US Air Force and DVIDS.

Sponsored links

Contents

  1. What is "center of gravity"?
  2. Why do tall things topple over?
  3. Why does gravity make your body tip over?
  4. What's the best way to balance?
  5. How does it help to know about center of gravity?
  6. Find out more

What is "center of gravity"?

Throw a ball in the air and gravity pulls it straight back down. Not everything moves like this when gravity acts on it. Most objects are not nice, neat shapes like balls. That means gravity acts on them in more complex ways. Even so, all objects behave as though their mass (the stuff they're made from) is concentrated at a point called their center of gravity. A simple object like a ball has its center of gravity in a very obvious place: right at its center. But in a more complex object, like your body, the center of gravity is slightly higher than your waist because there's more weight in the top half of your body than in the bottom half.

A giant C5 airplane having its center of gravity calculated.

Photo: Why does center of gravity matter? If you want to fly an aircraft safely, having a balanced load is important. 1) This giant C-5 Aircraft is having its center of gravity calculated in a special weight and balance hangar at Edwards Air Force Base in California. Photo by Derek Lawrence courtesy of National Archives.

A helicopter with its center of gravity shifted to one side by a load.

Photo: Captains of ships, pilot of planes and aircraft, and crane drivers all have to take account of how loads affect the vehicles they're operating. Here, a helicopter carrying a side load has its center of gravity shifted to the left, as we look at the picture. The pilot has to adjust the pitch of the rotors so they create more down-force on the left to compensate. Photographer unknown. Photo courtesy of National Archives.

Sponsored links

Why do tall things topple over?

Thinking about center of gravity helps us answer questions like this. Stand up straight, then try leaning over to one side. Very quickly you'll reach a point where your whole body feels like it's about to topple over. You're not actually moving but turning about your ankles. Your head moves faster than your knees. In fact, your whole body turns around your ankles like a wheel. You might think gravity is something that pulls things downward, but here it's making you turn in a circle! The taller you are, the more you'll turn because your whole body is acting like a lever, helping the force of gravity to turn you around.

To see how that works, try opening a door by pushing the handle with one finger. Easy, isn't it? When a force pushes something that can freely pivot (like a door on its hinges), that thing will turn instead of moving. Now try opening the same door by pushing with one finger near the hinge. This time it's much harder. The shorter the distance between the force and the pivot point, the harder it is for the force to make something turn. Wider doors are easier to open than narrower ones because the entire door acts like a lever, multiplying the force you use when you push on the handle. In exactly the same way, it's much easier to make something tall topple over than to topple something that's close to the ground.

Finding an object's center of gravity using a plumbline.

Artwork: How to find an object's center of gravity: 1) Hang the object from a point on its edge and it will rotate until its center of gravity is directly under that point. Hang a plumbline (a weight on a string) from the same point. Draw a line parallel to the string (yellow). 2) Now pick a different point on the edge and repeat the process. Draw another line parallel to the string (green). 3) The object's center of gravity is the point where the two lines meet.

Why does gravity make your body tip over?

Imagine your body is not a single, solid mass but a huge sack of potatoes standing upright. Gravity pulls on the whole sack, but it also acts on each potato separately, pulling each one downward. When you lean over to one side, the "potatoes" at the top of your body work like a lever, making your top half turn and topple about your ankles. The more you lean, the bigger the lever effect at the top of your body—and the more likely you are to topple.

There's another way of thinking about your weight. Yes, your body is a bit like a sack of potatoes. But it's also a bit like one giant potato, weighing as much as you do and concentrated in an infinitely tiny point, somewhere in your middle—roughly where your stomach is. This is your own, personal center of gravity. As long as your center of gravity is more or less above your feet, your body will always be balanced and you won't tip over. But start leaning to the side, and everything changes. Your head is one of the heaviest parts of your body—like a giant potato perched right on top. If you lean to your left, your center of gravity is no longer directly above the midpoint of your feet. The more you lean, the more torque (turning force) this creates and the more likely you are to topple over. Gravity makes your whole body rotate about your ankles like a finger pushing on a door handle.

A diagram showing how walking involves a constant adjustment to maintain your body's center of gravity in the right position.

Artwork: As long as your center of gravity (yellow star) remains roughly above the midpoint between your feet, you stay upright even during complex movements like walking and dancing. But if you move the top of your body too much in one direction, you'll create a turning force (green) that will tend to make you rotate. To stay upright, you'll need to move another part of your body and create a balancing force (yellow arrow) to cancel out the original turning force.

What's the best way to balance?

Lower your center of gravity

The lower your center of gravity, the easier it is to keep your balance. If you're sitting on a chair, you can lean over more than if you're standing up. With your center of gravity low, you can lean further to one side or the other without creating enough turning force to tip you over. That's why racing cars (and military vehicles like Humvees) are designed with very low centers of gravity: the lower they are to the ground, the less risk there is that they'll tip over, no matter how fast they go.

A US ARMY Humvee being driven quickly round a corner. HEAT trainer helps US Army personnel to practice escaping from a Humvee.
Photo: 1: The US Army's Humvee (High Mobility Multipurpose Wheeled Vehicle or HMMWV) has a low center of gravity, so it can corner at high speed, in difficult terrain, with much less risk of toppling over. 2: Even so, soldiers are trained to escape from a tipped-over Hummer using this hydraulically powered simulator called HEAT (HMMWV Egress Assistance Trainer). It rotates a mock-up of the Hummer's passenger compartment so soldiers can practice getting out in a variety of challenging conditions, including underwater. Hummer photo by Sgt. Alex Snyder, HEAT photo by Sgt. Travis Zielinski, both courtesy of US Army.

Counterbalance

Tightrope walkers use a slightly different trick to master their center of gravity. If you've ever watched a tightrope walker, you'll have noticed they never simply walk across the rope. Some stretch their arms out or carry a long stick or an umbrella. Others crouch down or bend their knees. Still others ride bicycles with weights dangling some way beneath them. These balancing aids help to give tightrope walkers more control over their center of gravity. If they can keep their center of gravity directly above the rope at all times, they will never fall off. If they start moving to one side, a turning force will start to topple them in that direction. So they have to quickly move part of their body to the other side to make a turning force in the opposite direction and restore their balance.

A woman balancing with a fan demonstrates Eoreum, tightrope dancing, in Korea.

Photo: A tightrope walker has an instinctive command of physics. You might think the fan she's carrying is just a funny little touch, but it's more important than it looks: it gives the walker an easy way to redistribute her weight and quickly correct any wobbles that could send her to the ground. Photo of Eoreum (also called Jultagi), Korean tightrope dancing, by Nicole Hall courtesy of United States Army Garrison Public Affairs and DVIDS.

Sponsored links

Buy time with inertia

Inertia (the tendency still objects have to stay still and moving objects to keep moving) helps too. A tightrope walker weighs quite a lot. That means they have a certain amount of inertia and it takes quite a bit of time for their body to move to one side or the other. If they feel themselves tipping, they have enough time to move another part of their body (or a stick or umbrella they're carrying) to the other side. That produces a tipping force in the opposite direction that keeps them balanced. Looking at a tightrope walker who's momentarily stationary, you might think no forces are acting—but you'd be wrong. Gravity acting on a walker's left arm will try to make him tip to the left, while the weight of his right arm will tip him to the right. The walker stays perfectly upright, perfectly motionless when all the different turning forces are exactly balanced and canceling one another out.

A Top End recumbent bike.

Photo: It's easy to fall off a normal bicycle, where your weight balances on a very thin wheel and even slight movements from side to side can send you toppling. It's almost impossible to fall from a recumbent bike (one like this, where you lie back), because your center of gravity is almost at ground level. Photo by Charles M. Bailey courtesy of US Army.

Widen the base

If you need to keep something balanced and you can't lower its center of gravity, another option is to make its base wider. If you're standing on the deck of a ship in a rough sea, it's easier to keep your balance if you place your feet further apart—so widening your own base. Then, even if your body tips to one side, your center of gravity is still within the area of your base and you should be able to stay upright. You can see the same idea at work in cranes. If you've got a really tall crane lifting high a heavy load, it might use side-extending legs called outriggers to keep itself stable.

Red hydraulic crane with outriggers extended.

Photo: The center of gravity of a crane rises as it lifts its load, potentially making it unstable if the load swings too far out to the side. Outriggers widen the base to help stop it toppling over. Photo by Werner Slocum courtesy of NREL (National Renewable Energy Laboratory) (photo id#144647).

How does it help to know about center of gravity?

If you're a skeptic, you might think science is full of useless bits of information you never really need to know, but center of gravity isn't one of them. Last winter, the lane where I live froze over completely and turned to a sheet of ice. What's the best way to walk down a frozen street? Assuming you don't have mountaineering boots, the safest way to do it is to get down on all fours and crawl along, like a polar bear, on your hands and knees. You might get wet or dirty but you won't tumble over and break your neck. If you make your center of gravity very low, it's impossible to fall.

A male polar bear walks across pack ice

Photo: Bears do sometimes walk on their back legs, but it's quicker, easier, and safer to walk on all fours—because they have a lower center of gravity and can't topple over. Picture by Erich Regehr courtesy of US Fish & Wildlife Service.

Thinking about center of gravity is also key to playing many sports effectively. Anything that involves balance—pretty much every sport from figure skating to surfing—involves thinking about where your weight is and how to move it quickly without using too much energy or losing control. You've noticed how tennis players plant their feet wide apart? And how high jumpers do weird things curling their bodies up and round the pole? All that kind of thing is based on understanding center of gravity—and putting it to practical use!

A high jumper goes over a bar using the Fosbury Flop to keep his center of gravity low.

Photo: Low center of gravity: the high-jumping technique called Fosbury Flop, shown here, works by keeping your center of gravity so low that it goes underneath the bar. Photo by Matthew L. Romano courtesy of US Navy and Wikimedia Commons.

If you ever find yourself in a rowboat, understanding center of gravity will help keep you safe and dry. Stand up in a small boat and you'll suddenly have a much higher center of gravity that can easily tip you over as the boat rotates beneath you and capsizes (rolls over). Keep low down and you'll find it easier to stay balanced. Bigger boats have vertical wooden "fins" called keels on their undersides, partly to stop them capsizing, partly to help them sail more effectively, when winds blow them from the side.

About the author

Chris Woodford is the author and editor of dozens of science and technology books for adults and children, including DK's worldwide bestselling Cool Stuff series and Atoms Under the Floorboards, which won the American Institute of Physics Science Writing award in 2016. You can hire him to write books, articles, scripts, corporate copy, and more via his website chriswoodford.com.

Sponsored links

There's SO MUCH MORE on this website!

From airplanes to virtual reality and adhesives to X-rays, there are over 400 detailed, richly illustrated, easy-to-understand, introductory articles on our site.

Find what you want with our Google-powered search engine:

Find out more

On this website

Books

For older readers

For younger readers

Videos

Please do NOT copy our articles onto blogs and other websites

Articles from this website are registered at the US Copyright Office. Copying or otherwise using registered works without permission, removing this or other copyright notices, and/or infringing related rights could make you liable to severe civil or criminal penalties.

Text copyright © Chris Woodford 2009, 2021. All rights reserved. Full copyright notice and terms of use.

Follow us

Rate this page

Please rate or give feedback on this page and I will make a donation to WaterAid.

Tell your friends

If you've enjoyed this website, please kindly tell your friends about us on your favorite social sites.

Press CTRL + D to bookmark this page for later, or email the link to a friend.

Cite this page

Woodford, Chris. (2009/2022) Center of gravity. Retrieved from https://www.explainthatstuff.com/center-of-gravity.html. [Accessed (Insert date here)]

Bibtex

@misc{woodford_cog, author = "Woodford, Chris", title = "Center of gravity", publisher = "Explain that Stuff", year = "2009", url = "https://www.explainthatstuff.com/center-of-gravity.html", urldate = "2022-11-24" }

More to explore on our website...

Back to top